
Under Construction:
Delphi 2 And CGI
by Bob Swart

This time, we’re not going to
build a component or expert,

but we’ll start to explore the
internet, specifically the world
wide web. Our goal is to put a
search engine for TDMBKS (The
Delphi Magazine Review Database
of Delphi Books) on the web, in-
cluding the individual reviews
themselves. Our main tool, of
course, is Delphi 2...

To write interactive intranet
applications, Borland has just re-
leased IntraBuilder. In fact, the
interactive version of TDMBKS
started out as an intranet applica-
tion at Bolesian. We have an NT
Web Server, running Microsoft
Internet Information Server (IIS).
As “webmaster” of the Delphi
pages in our intranet, I wanted to
experiment with interactive intra-
net and internet pages right away.
To do this, I had to master HTML
and CGI and overcome some
problems along the way.

HTML
HTML stands for HyperText
Markup Language, which is the
basic language of any static page
on the web. Browsers such as
Netscape Navigator and Microsoft
Internet Explorer are just interpret-
ers of HTML codes in the pages
they show. Using special HTML
codes, you can do just about any-
thing with your home page, includ-
ing things like headers, bold and
italic text attributes, images and
even frames and tables.

I won’t go into detail about
HTML, I’ll just say that if you want
to write great looking web pages,
then look for a good book to learn
it, such as Netscape & HTML
Explorer from The Coriolis Group,
or (Special Edition) Using HTML
from QUE, and don’t depend on
HTML editors that (try to) do
everything for you automatically.
Besides books, one of the best

ways to quickly learn HTML is to
jump on the web, browse through
some nice pages and look in your
cache directory (both Navigator
and Internet Explorer will save
pages in a cache directory to speed
up reloading). This is especially
useful for special effects such as
frames or the use of JavaScript.

The HTML language itself is not
hard to learn and you’ll be better
off if you know what you’re writing.
I always write my HTML pages in a
plain ASCII editor. HTML is made
up of plain ASCII text and tags be-
tween “<” and “>” characters. An
HTML page always starts with
<HTML> and ends with </HTML>.
The actual contents are put be-
tween <BODY> and </BODY> tags.
A simple HTML page with a one line
header is shown in Listing 1.

The <P> tag denotes a new para-
graph, the <HR> is a horizontal rule

and between the <ADDRESS> and
</ADDRESS> tags we can put ad-
dress information and a link to a
home page or email address, for
example. This information will be
printed in italic by default.

The <A> tags are part of the foun-
dation of HTML; these form the
syntax for the hyper-links, in this
case to my own home page at
http://home.pi.net/~drbob/. For
this simple HTML page, any web
browser will show one page with a
title and a link (often underlined),
as shown in Figure 1.

CGI
Whilst HTML is the standard for
the hypertext document format,
CGI stands for Common Gateway
Interface and is the standard
communication interface between
the Client (Web Browser) and the
Server (Web Server). There are at

<HTML>
<BODY>
<H1>
Are you looking for a good Delphi book?
</H1>
<P>
<HR>
<ADDRESS>
Dr.Bob’s Delphi Clinic
</ADDRESS>
</BODY>
</HTML>

➤ Above: Figure 1, which shows the result of the HTML code in...
➤ Below: Listing 1

November 1996 The Delphi Magazine 25

least two different forms of CGI: the
plain ‘low level’ CGI and a higher
level called WinCGI (for Windows
(NT) CGI). The first uses environ-
ment variables and the standard
input and output files, the latter a
Windows INI-format file (that speci-
fies the names for the input and
output files) to communicate
between the Client at the Web
Browser and the Web Server
running the CGI application.

Delphi 2 CGI applications are
non-visual applications, ie CONSOLE
applications, where the input con-
tains the information (request)
sent by the client and the output is
the dynamic HTML document that
is generated on the fly (and sent
back to the Client with the Web
Browser). The information that is
entered by the Client, and sent to
the CGI application to be used
when generating the HTML page,
can be sent in two ways: either us-
ing environment variables and the
standard input file (standard CGI)
or by using a Windows INI-file and
a specified filename (WinCGI).

This article will focus on stand-
ard CGI applications. Steve Troxell
is working on a follow-up article on
the web version of the TDMAid
Delphi Magazine Article Index Da-
tabase application using WinCGI.
Both applications will be available
for use from The Delphi Magazine’s
web site of course. Thanks also to
TurboPower Software who are
kindly hosting these CGI applica-
tions on their NT Web Server for us.

Forms
But before we can determine what
the Client wants, let’s first take a
look at how the Client side actually
works. How can a static HTML page
cause information to be sent over
to the Web Server and an CGI appli-
cation at the Server to be
executed?

For this, we need to use a special
HTML extension called forms. Just
as in Delphi, a form is a place where
Windows Controls (such as an edit
box, listbox, combobox, button or
multi-line text field) can be used.
Unlike Delphi, at the moment we
have to design our forms non-
visually by writing HTML code.
Let’s take a look at a part of the

DELBOOKS.HTM file that is used
for this month’s application, in
Listing 2. For the complete file,
please refer to the latest version
online at:

http://members.aol.com/drbobnl/
 delbooks.htm.

The code in Listing 2 displays three
radio buttons (with choices of
Delphi 1.0x or 2.0x, Delphi 1.0x
only and Delphi 2.0x only) and a
combobox with four items (Don’t
care, Beginning, Intermediate and
Advanced). There are also two but-
tons on the form, one of type RESET,
to reset the information we’ve just

entered, and one of type SUBMIT, to
submit the information we’ve just
entered. So, a user with this page
loaded in his/her favourite Web
Browser just clicks on the SUBMIT
button, in this case with the text
Get Results on it.

But how does the Web Server
know which CGI application to
start for the data that is sent over?
For that we need to take a look at
the ACTION parameter of the FORM
itself (the first line of Listing 2). The
ACTION specifies the exact location
of the CGI program, in this case it
is http://www.bolesian.com/scripts
/delbooks.exe (but kids, don’t try
this at home, because this example

<FORM ACTION="http://www.bolesian.com/scripts/delbooks.exe" METHOD="POST">

<INPUT TYPE="radio" NAME="DELPHI" VALUE="0" CHECKED>Delphi 1.0x or 2.0x

<INPUT TYPE="radio" NAME="DELPHI" VALUE="1">Delphi 1.0x only

<INPUT TYPE="radio" NAME="DELPHI" VALUE="2">Delphi 2.0x only
<P>
Level:

<SELECT NAME="Level">
 <OPTION VALUE=""> don’t care
 <OPTION VALUE="1"> Beginning
 <OPTION VALUE="2"> Intermediate
 <OPTION VALUE="3"> Advanced
 </SELECT>
<P>

<HR>
<P>
<INPUT TYPE="RESET" VALUE="Reset Query">
<INPUT TYPE="SUBMIT" VALUE="Get Results">
</FORM>

➤ Listing 2

➤ Figure 2

26 The Delphi Magazine Issue 15

is a link to my intranet, not the
internet).

Of course, the “official”
DELBOOKS.HTM contains even
more controls (comboboxes, actu-
ally) to contain all possible titles,
authors, publishers and ISBN num-
bers of the Delphi books that are in
the TDMBKS review database of
Delphi books (currently over 40
books). Figure 2 shows this
enhanced form in action.

Clicking the Get Result button
sends the information to the Web
Server which will start the
DELBOOKS.EXE application (from
the form’s ACTION information) with
the information that was supplied
in the form. In this case that would
be DELPHI="2", LEVEL="3", TITLE="",
AUTHOR="Bob_Swart", PUBLISHER=""
and ISBN="". Note that spaces are
replaced by underscores, as I
found out the hard way...

The DELBOOKS.EXE Delphi 2 CGI
application needs to process the
information passed to it, perform
the query and generate a dynamic
HTML page on the standard output
device. The Web Server will then
pass this dynamically generated
HTML page back to the Web
Browser which will show it as the
resulting page to the user.

Environment
Standard CGI applications need to
look at environment variables to
know what kind of communication
is used and how big the data in the
standard input is. To obtain a list of
environment variables with their
value, I always use a simple compo-
nent I wrote some time ago and
now compiles with both Delphi 1
and 2, as shown in Listing 3.

This component gets the list of
environment variables when it is
created. Note the DosEnvCount and
DosEnvList properties are read
only, so you need to create this
component on the fly (and not
drop it on a form), because only
then will a ‘fresh’ list of environ-
ment variables be obtained (rather
than loaded from the .DFM file).

Parsing
The environment variables the CGI
application receives contain a sec-
tion called REQUEST_METHOD. This
should be POST in our example (I
won’t go into the other options).
Then we need to find the length of
the information that was passed to
us. For that, we need to look for the
CONTENT_LENGTH environment vari-
able. The actual information itself
is passed as a standard input file of
length CONTENT_LENGTH (without an
end of file marker, so we need to be

sure not to read more than the
specified number of characters).
The data in the standard input file
consists of FIELD=VALUE pairs, sepa-
rated by & tokens. An example is
AUTHOR="Bob_Swart"&. Once we have
the complete input file in a long
string buffer called Data, we can
quickly scan for the value of AUTHOR
by using the function shown in
Listing 4.

A similar function can be written
if the data is numerical (for exam-
ple for the LEVEL field). The skele-
ton code fragment in Listing 5
shows how to dynamically create
the TBDosEnvironment variable, read
the information from the input file
and get ready to parse the values
for the controls on the form.

Note the three special WriteLn
lines that need to be written to the
standard output to tell the Web
Browser that the dynamically gen-
erated page it received is actually
a correct HTTP page with TEXT/HTML
contents.

Database
When writing data-driven CGI ap-
plications, you need some way to
access your data. One solution is
simply to use the BDE and put your
data in Paradox or dBase tables.
However, if, for some reason, the
BDE is not installed on your NT

unit TBDosEnv;
interface
uses SysUtils, WinTypes, WinProcs, Classes;
type
 TBDosEnvironment = class(TComponent)
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 private
 FDosEnvList: TStringList;
 protected
 function GetDosEnvCount: Word;
 public
 function GetDosEnvStr(Const Name: String): String;
 { This function is a modified version of the GetEnvVar
function that appears
 in the WinDos unit that comes with Delphi; its
interface uses Pascal
 strings instead of null-terminated strings }
 property DosEnvCount: Word read GetDosEnvCount;
 property DosEnvList: TStringList read FDosEnvList;
 end;
implementation
constructor TBDosEnvironment.Create(AOwner: TComponent);
var P: PChar;
 i: Integer;
begin
 inherited Create(AOwner);
 FDosEnvList := TStringList.Create;
 {$IFDEF WIN32}
 P := GetEnvironmentStrings;
 {$ELSE}
 P := GetDosEnvironment; { Win API }
 {$ENDIF}
 i := 0;
 while P^ <> #0 do begin
 Inc(i);
 FDosEnvList.Add(StrPas(P));

 Inc(P, StrLen(P)+1) { Fast Jump to Next Var }
 end;
end {Create};
destructor TBDosEnvironment.Destroy;
begin
 FDosEnvList.Free;
 FDosEnvList := nil;
 inherited Destroy
end {Destroy};
function TBDosEnvironment.GetDosEnvCount: Word;
 { Returns the number of environment variables }
begin
 Result := 0;
 if Assigned(FDosEnvList) then Result := FDosEnvList.Count
end {GetDosEnvCount};
function TBDosEnvironment.GetDosEnvStr(Const Name: String):
String;
var i: Integer;
 Tmp: String;
begin
 i := 0;
 Result := ’’;
 if Assigned(FDosEnvList) then while i < FDosEnvList.Count
do begin
 Tmp := FDosEnvList[i];
 Inc(i);
 if Pos(Name,Tmp) = 1 then begin
 Delete(Tmp,1,Length(Name));
 if Tmp[1] = ’=’ then begin
 Delete(Tmp,1,1);
 Result := Tmp;
 i := FDosEnvList.Count { end while-loop }
 end
 end
 end
end {GetDosEnvStr};
end.

➤ Listing 3

November 1996 The Delphi Magazine 27

Web Server (maybe because your
friendly neighbourhood Internet
Service Provider doesn’t provide
you with the BDE in the first place),
you need to improvise. And since
the BDE wasn’t installed on our
company’s intranet Server either
(until we installed IntraBuilder,
that is), I had to improvise early.

In the old days of Borland Pascal,
when we needed data in some kind
of database we used a file of
record type. And that’s what we can
use when we don’t have access to
the BDE. All we need to do is write
a program that will analyse a table
structure, define a TRecord type and
convert the data from the database
to a file of TRecord.

Conversion
If we take a look at the general Para-
dox field types, it shouldn’t be hard
to notice at least a few which might
pose a problem when converting
them to Pascal. A Memo, for example,
usually doesn’t fit in a ShortString.
And what about a Blob?

For those types which can be
converted, a translation table is
shown in Table 1, which at least
makes sure no information is lost
during the one-way conversion.
Using this table, it’s not hard to
write a simple program that takes
a database table as input and gen-
erates an ObjectPascal record type
as output. See Listing 6.

Records
Our next task is to generate a re-
cord type for the DELBOOKS.DB
table and convert the actual re-
cords to a file of records. Using the
RECORD.EXE program (Listing 6),
the record format shown in Listing
7 was generated.

Now, all we need to do is write a
loop to walk through the database
and extract the data from each re-
cord in the table, put it in a TRecord
and write it to a file of TRecord.
See Listing 8.

A Delphi 2 CGI program can sim-
ply open the file of TRecord and
read the individual records with-
out having to use the BDE. Of
course, updating records is not
easy, but for that we use the origi-
nal database (and run the conver-
sion program once we’ve done an

update). After all, I only add new
reviews once in a while to the data-
base, so this inconvenience won’t
matter too much.

Performance
One more difference between a CGI
application that is able to use the
BDE to obtain data and perform
queries and our BDE-less CGI
application is performance. Not
only is our application only about
70Kb in size, it doesn’t need the
BDE to be loaded, so the load time
is much less (resulting in a much

faster performance, especially
since the complete time from start-
up to shut-down counts). Larger
scale practical CGI applications
using the BDE often use an ISAPI
(Information Server API) or NSAPI
(Netscape Server API) extension to
keep the CGI application “in the air”
at all times. I’ve yet to experiment
with these techniques.

In fact, I managed to increase
performance even further by not
using a file of TRecord, but by
using an array of records with pre-
initialised values! Instead of writing

var Data: String;
...
function Value(Const Field: ShortString): ShortString;
var i: Integer;
begin
 Result := ’’;
 i := Pos(Field+’=’,Data);
 if i > 0 then begin
 Inc(i,Length(Field)+1);
 while Data[i] <> ’&’ do begin
 Result := Result + Data[i];
 Inc(i)
 end
 end
end {Value};

➤ Listing 4

{$APPTYPE CONSOLE}
var Data: String;
 ContentLength,i,j: Integer;
begin
 writeln(’HTTP/1.0 200 OK’);
 writeln(’SERVER: Bolesian Intranet WebServer 1.0’);
 writeln(’CONTENT-TYPE: TEXT/HTML’);
 writeln;
 writeln(’<HTML>’);
 writeln(’<BODY>’);
 writeln(’<I>Generated by Dr.Bob’’s CGI-Expert on </I>’,
 DateTimeToStr(Now));
 with TBDosEnvironment.Create(nil) do begin
 for i := 0 to Pred(DosEnvCount) do begin
 if Pos(’REQUEST_METHOD’,DosEnvList[i]) > 0 then begin
 Data := DosEnvList[i];
 Delete(Data,1,Pos(’=’,Data))
 end
 end;
 if Data = ’POST’ then begin
 ContentLength := StrToInt(GetDosEnvStr(’CONTENT_LENGTH’));
 SetLength(Data,ContentLength+1);
 j := 0;
 for i:=1 to ContentLength do begin
 Inc(j);
 read(Data[j]);
 end;
 Data[j+1] := ’&’;
 { now call Value or ValueAsInteger to obtain individual values }
 end;
 end;
end;

➤ Listing 5

Paradox Field Type ObjectPascal Conversion Type

TStringField (size) String[length]

TIntegerField, TWordField, TSmallIntField Integer

Currency Double

Memo, Blob Not applicable (ignored)

➤ Table 1: Paradox to Pascal field type translation

28 The Delphi Magazine Issue 15

to a file, I generated ObjectPascal
code again with the values of the
fields. That way, I could generate
ObjectPascal source code for a CGI
program with all information em-
bedded. No file was needed and
after compilation this was a stand-
alone Delphi 2 executable (of 77824
bytes) that contained information
on 44 books, was capable of pars-
ing environment variables, reading
the standard input file and generat-
ing HTML pages on the standard

output with dynamic contents de-
pending on the query information
entered in the form.

Scoring
The code used to score hits is
pretty simple: for fields on the form
for which a value was selected, we
go through each record in the list
of records and add 1 to the score
for that particular record if the cor-
responding field in the record has
a value that is equal to (or a

sub-string of) the field from the in-
put form. The code for the Author
field is as shown in Listing 9.

Note that the {$IFDEF DEBUG} can
be used to write the value of the
input field to the standard output,
so we can actually use this CGI ap-
plication to debug our forms,
which can be quite helpful if you
think you must have some hits but
none show up (because spaces are
replaced by underscores, for ex-
ample). Debugging your CGI appli-
cations is otherwise not easy, since
you need a Web Server and a
Browser to interact for you...

Query Results
Let’s take a look at the final part of
the CGI application, where we gen-
erate the HTML code. I’m using an-
other advanced HTML feature
here, namely tables, to format the
output in a nice way. For every re-
cord that has a score of more than
1, I write the score (number of
hits), title, author, publisher, ISBN,
level, technical contents, quality of
writing, value for money and over-
all score. I also include a link from
the Title to the location of a more
detailed review. This is great fea-
ture of dynamic HTML pages: you
can still include links to static
HTML pages, of course, so the re-
sult of the query is often the start-
ing point for another set of jumps
into hyperspace! See Listing 10.

Once the table header has been
written, it’s time to go through the
individual records. I didn’t want to
sort them, so for each possible
score (from 5 to 1), I just go
through the entire list of books and
print the one with the current
score. That way I know the books
will be sorted on the number of

{$APPTYPE CONSOLE}
uses DB, DBTables;
var i: Integer;
begin
 if ParamCount >= 1 then with TTable.Create(nil) do
 try
 TableName := ParamStr(1);
 Active := True;
 writeln(’Type’);
 writeln(’ TRecord = record’);
 for i:=0 to Pred(FieldDefs.Count) do begin
 if (FieldDefs[i].FieldClass = TStringField) then
 writeln(’ ’:4,FieldDefs[i].Name,’: String[’,FieldDefs[i].Size,’];’)
 else begin
 if (FieldDefs[i].FieldClass = TIntegerField) or
 (FieldDefs[i].FieldClass = TWordField) or
 (FieldDefs[i].FieldClass = TSmallintField) then
 writeln(’ ’:4,FieldDefs[i].Name,’: Integer;’)
 else
 if (FieldDefs[i].FieldClass = TCurrencyField) then
 writeln(’ ’:4,FieldDefs[i].Name,’: Double;’)
 else
 writeln(’{ ’:6,FieldDefs[i].Name,’ }’)
 end
 end
 finally
 writeln(’ end;’);
 Free
 end
 else
 writeln(’Usage: record tablename’)
end.

➤ Listing 6

Type
 TRecord = record
 ISBN: String[16];
 Title: String[64];
 Author: String[64];
 Publisher: String[32];
 Price: Double;
 Code: String[7];
 { Comments }
 Level: Integer;
 TechnicalContentsQuality:
 Integer;
 QualityOfWriting: Integer;
 ValueForMoney: Integer;
 OverallAssessment: Integer;
 { Cover }
 end;

➤ Listing 7

{$APPTYPE CONSOLE}
uses DB, DBTables, SysUtils;
var i: Integer;
 Rec: TRecord; { Listing 7 }
 F: File of TRecord;
begin
 if ParamCount >= 1 then with TTable.Create(nil) do
 try
 System.Assign(f,ChangeFileExt(ParamStr(1),’.REC’));
 Rewrite(f);
 TableName := ParamStr(1);
 Active := True;
 First;
 while not Eof do with Rec do begin
 ISBN := FieldByName(’ISBN’).AsString;
 Title := FieldByName(’Title’).AsString;
 Author := FieldByName(’Author’).AsString;
 Publisher := FieldByName(’Publisher’).AsString;
 Price := FieldByName(’Price’).AsFloat;
 Code := FieldByName(’Code’).AsString;
 Level := FieldByName(’Level’).AsInteger;
 TechnicalContentsQuality :=
 FieldByName(’TechnicalContentsQuality’).AsInteger;
 QualityOfWriting := FieldByName(’QualityOfWriting’).AsInteger;
 ValueForMoney := FieldByName(’ValueForMoney’).AsInteger;
 OverallAssessment := FieldByName(’OverallAssessment’).AsInteger;
 write(f,Rec);
 Next
 end
 finally
 System.Close(f);
 Free
 end
 else
 writeln(’Usage: convert tablename’)
end.

➤ Listing 8

November 1996 The Delphi Magazine 29

hits, and are still in the order in
which they were entered in the
original database (which is sorted
on level and an overall quality
score). So, generally, the books on
top of the resulting output list are
the best answer to the question
that was asked.

➤ Figure 3

if DataRec.Author <> ’’ then begin
 {$IFDEF DEBUG}
 writeln(’Author: ’,DataRec.Author,’
’);
 {$ENDIF}
 for i:=1 to Books16 do
 if Pos(DataRec.Author,Book16[i].Author) > 0 then Inc(Result16[i]);
 for i:=1 to Books32 do
 if Pos(DataRec.Author,Book32[i].Author) > 0 then Inc(Result32[i])
end;

➤ Listing 9

writeln(’<HR>’);
writeln(’<P>’);
writeln(
 ’<H3>The following books have been found for you:</H3>’);
writeln(’<TABLE BORDER>’);
writeln(’<TR>’);
writeln(’<TH>Hits</TH>’);
writeln(’<TH>Title</TH>’);
writeln(’<TH>Author</TH>’);
writeln(’<TH>Publisher</TH>’);
writeln(’<TH>ISBN</TH>’);
writeln(’<TH>Level</TH>’);
writeln(’<TH>Con</TH>’);
writeln(’<TH>Wri</TH>’);
writeln(’<TH>Val</TH>’);
writeln(’<TH>Tot</TH>’);
writeln(’</TR>’);
if DataRec.Delphi2 then begin
 for Hits := 5 downto 1 do begin
 for i:=1 to Books32 do if Result32[i] = Hits then begin
 writeln(’<TR>’);
 writeln(’<TD>’,Roman[Hits],’</TD>’);
 writeln(’<TD>’,
 Book32[i].Title,’</TD>’);
 writeln(’<TD>’,Book32[i].Author,’</TD>’);
 writeln(’<TD>’,Book32[i].Publisher,’</TD>’);
 writeln(’<TD>’,Book32[i].ISBN,’</TD>’);
 writeln(’<TD>’,Level[Book32[i].Level],’</TD>’);
 writeln(’<TD>’,Book32[i].TechnicalContentsQuality,
 ’</TD>’);
 writeln(’<TD>’,Book32[i].QualityOfWriting,’</TD>’);
 writeln(’<TD>’,Book32[i].ValueForMoney,’</TD>’);
 writeln(’<TD>’, Book32[i].OverallAssessment,
 ’</TD>’);

 writeln(’</TR>’)
 end
 end;
 if DataRec.Delphi1 then writeln(’<TR></TR>’)
end;
if DataRec.Delphi1 then begin
 for Hits := 5 downto 1 do begin
 for i:=1 to Books16 do if Result16[i] = Hits then begin
 writeln(’<TR>’);
 writeln(’<TD>’,Roman[Hits],’</TD>’);
 writeln(’<TD>’,
 Book16[i].Title,’</TD>’);
 writeln(’<TD>’,Book16[i].Author,’</TD>’);
 writeln(’<TD>’,Book16[i].Publisher,’</TD>’);
 writeln(’<TD>’,Book16[i].ISBN,’</TD>’);
 writeln(’<TD>’,Level[Book16[i].Level],’</TD>’);
 writeln(’<TD>’,Book16[i].TechnicalContentsQuality,
 ’</TD>’);
 writeln(’<TD>’,Book16[i].QualityOfWriting,’</TD>’);
 writeln(’<TD>’,Book16[i].ValueForMoney,’</TD>’);
 writeln(’<TD>’,Book16[i].OverallAssessment,
 ’</TD>’);
 writeln(’</TR>’)
 end
 end
end;
writeln(’</TABLE>’);
writeln(’<HR>’);
writeln(’Dr.Bob’’s
Delphi Clinic’);
writeln(’</BODY>’);
writeln(’</HTML>’);
writeln;
Free;

➤ Listing 10

The resulting HTML page, gener-
ated for the query we saw earlier,
is shown in Figure 3. Note that one
book had a score of II (for hits on
both the Advanced level and the
name of the Author). Also note the
links from the titles of the books to
the more detailed review pages.

Conclusion
I hope to have shown that you can
write interactive internet and intra-
net CGI applications using Delphi 2
in a fairly straightforward (albeit
non-visual) manner. Personally, I
plan to do a lot more with Delphi
and the internet/intranet, so stay
tuned for more news and technical
stuff. The best places to check out
for news and more information are
of course The Delphi Magazine and
my own internet home page at
http://home.pi.net/~drbob/. Watch
out too for a new CGI-Expert for
Delphi 2 that I’m working on...

If you have any experience, prob-
lems or interesting ideas on in-
ternet development using Delphi,
don’t hesitate to send me a mes-
sage at bob@bolesian.nl. We’re all
here to learn from each other.
That’s the fastest way to master it!

See you next time for the prom-
ised TRuleBase component.

Bob Swart (aka Dr.Bob) is a full-
time Knowledge Engineer Special-
ist for Bolesian in The Netherlands
and part-time technical author
and columnist for The Delphi
Magazine. In his spare time he
likes to watch video tapes of Star
Trek Voyager and Deep Space
Nine with his 2.5 year old son Erik
Mark Pascal.

30 The Delphi Magazine Issue 15

	HTML
	CGI
	Forms
	Environment
	Parsing
	Database
	Conversion
	Records
	Performance
	Scoring
	Query Results
	Conclusion

